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Abstract—Voice cloning technologies have found 

applications in a variety of areas ranging from personalized 

speech interfaces to advertisement, robotics, and so on. 

Existing voice cloning systems are capable of learning 

speaker characteristics and use trained models to synthesize 

a person’s voice from only a few audio samples. Advances in 

cloned speech generation technologies are capable of 

generating perceptually indistinguishable speech from a 

bona-fide speech. These advances pose new security and 

privacy threats to voice-driven interfaces and speech-based 

access control systems. The state-of-the-art speech synthesis 

technologies use trained or tuned generative models for 

cloned speech generation. Trained generative models rely on 

linear operations, learned weights, and excitation source for 

cloned speech synthesis. These systems leave characteristic 

artifacts in the synthesized speech. Higher-order spectral 

analysis is used to capture differentiating attributes between 

bona-fide and cloned audios. Specifically, quadrature phase 

coupling (QPC) in the estimated bicoherence, Gaussianity 

test statistics, and linearity test statistics are used to capture 

generative model artifacts. Performance of the proposed 

method is evaluated on cloned audios generated using 

speaker adaptation- and speaker encoding-based 

approaches. Experimental results for a dataset consisting of 

126 cloned speech and 8 bona-fide speech samples indicate 

that the proposed method is capable of detecting bona-fide 

and cloned audios with close to a perfect detection rate. 

Keywords–Cloned audio; voice activated services; higher-

order spectral analysis; Gaussianity test statistics; Linearity test 

statistics; generative model 

I.  INTRODUCTION 

Artificial human speech synthesis from text, also known 
as text-to-speech (T2S), is an essential feature in many 
applications including voice-driven interfaces, humanoid 
robots, navigation systems, and accessibility for the visually-
impaired. Modern T2S systems are based on complex, multi-
stage processing pipelines, each of which may rely on hand-
engineered features and heuristics. Generative models have 
been successfully applied to many domains such as image 
generation [1], speech synthesis [2, 3], and language modeling 
[4].  

Advances in artificial intelligence (AI), speech synthesis, 
image and video generation technologies pose new security 

and privacy threats to biometric-based access control systems 
and voice-driven interfaces. For instance, voice-driven 
interfaces and services, such as Amazon Alexa [5], Google 
Home [6], Apple Siri [7], etc., are on the rise. For example, 
Barclays Wealth has been using passive automatic speaker 
recognition (ASR) for telephone caller identity verification 
[8], a verified voiceprint is expected to be used to identify 
callers. Similarly, the private banking division of Barclays is 
the first financial services firm to deploy voice biometrics as 
the primary means to authenticate customers to their call 
centers [9]. Since then, many voice-biometric-based solutions 
have been deployed across several financial institutions, 
including Banco Santander, Royal Bank of Canada, Tangerine 
Bank, and Manulife, HSBC Bank [10–13]. The existing voice-
driven interfaces and voice-biometric-based access control 
systems are vulnerable to replay and cloned voice attacks, that 
is, injection of synthesized or recorded voice of an authentic 
user [14].  

This paper presents a framework to secure voice-driven 
interfaces and services against cloned speech attacks. The 
proposed method rely on generative model artifacts for cloned 
speech detection. Specifically, trained generative models rely 
on linear operation on excitation source and learned weights 
for cloned speech generation which differs from natural 
(bona-fide) speech generation process. It is therefore 
reasonable to assume that cloned speech is expected to 
exhibits more linearity than a bona-fide speech. Higher-order 
spectral analysis is used to capture differentiating attributes of 
bona-fide and cloned audios. Specifically, bicoherence 
magnitude and phase spectra, Gaussianity test statistics, and 
linearity test statistics are used to capture generative model 
artifacts.  Performance of the proposed method is evaluated on 
cloned speech recordings generated using speaker adaptation- 
and speaker encoding-based approaches discussed in [15]. 
Experimental results for a dataset of 134 speech samples 
indicate that the proposed method is capable of detecting 
bona-fide and cloned audios with close to a perfect detection 
rate. 

A. Contributions 

Contributions of our work are: 

1. We have demonstrated that generative models leave 

characteristics artifacts in the resulting cloned speech 

recordings.   

2. We proposed cloned voice attack model on voice driven-

interfaces and automatic speaker recognition (ASR) 

systems.  
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3. We proposed a method for cloned audio detection. 

Higher-order spectral analysis and Gaussianity and 

linearity statistical tests are used to capture traces of 

generative models for speech synthesis and human 

speech. 

4. Effectiveness of the proposed method is evaluated on 

Baidu cloned audio dataset available via [15]. 

Performance of the proposed is evaluated on cloned 

speech recordings synthesized using (i) speaker 

adaptation and (ii) speaker encoding methods discussed 

in [15]. The performance of the proposed method is also 

evaluated on voice impersonation using voice morphing 

via embedding manipulations method discussed in [15].

ASR System 

 

 

Speech Synthesis 
Generative Models

Voice-Driven Devices

A2: Cloned voice injection attack
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Figure 1: Cloned voice attack model for ASR and voice-driven interfaces

II. CLONED VOICE GENERATION  

Recent advances in artificial intelligence (AI) and deep 
learning has enabled research to clone human speech (e.g., 
Deep Voice [3, 16, 17]) from few samples [15], images, and 
video. Cloned speech is an extension traditional text-to-
speech (T2S) process. Deep learning based methods [15] train 
generative models that adopt the same structure of T2S, but 
differ in replacing all components with neural networks and 
rely on relatively simpler features. These generative models 
can be conditioned on text and speaker identity [16] for speech 
synthesis. For these generative models, text provides 
linguistic information and controls the content of the 
generated speech; whereas, speaker identity carries speaker 
specific characteristics, e.g., pitch, accent, etc. The multi-
speaker speech synthesis systems jointly train a generative 
model and speaker embedding on text, audio and speaker 
identity [17]. These systems share majority of the model 
parameters across all speakers and use low-dimensional 
embedding to encode the speaker-specific information. These 
methods are capable of generating speech for speakers 
observed during training phase. Recently, Arık et al [15] 
proposed few-shot generative modeling of speech conditioned 
on speaker identity. Their system is capable of voice cloning 
from few speech samples of an unseen speaker. One of the 
salient features of the few-shot generative modeling system 
[15] is that it is capable of voice cloning of a new speaker 
characteristics from a very limited data, e.g., just few seconds 
of speech data.  

A. Multi-speaker Generative Modeling for Voice Cloning 

Consider a multi-speaker generative model 

𝜑(𝑡𝑖,𝑗 , 𝑠𝑖; 𝜋, 𝑒𝑠𝑖
), which takes a text 𝑡𝑖,𝑗 and a speaker identity, 

𝑠𝑖, trainable parameters, 𝜋 , and   trainable speaker embedding 
corresponding to speaker i, 𝑒𝑠𝑖

. The trainable parameters,𝜋, 

and  𝑒𝑠𝑖
, are optimized by minimizing a loss function, ℒ(. ), 

expressed as, 

min
𝜋,𝑒

𝐸 
𝑠𝑖~𝑆

(𝑡𝑖,𝑗, 𝑎𝑖,𝑗)~𝒯𝑠𝑖

{ℒ(𝜑(𝑡𝑖,𝑗 , 𝑠𝑖; 𝜋, 𝑒𝑠𝑖
), 𝑎𝑖,𝑗)} 

where 𝑆 is a set of speakers, 𝒯𝑠𝑖
 is a training set of text-audio 

pairs for speaker 𝑠𝑖, and 𝑎𝑖,𝑗 is the ground-truth audio for 𝑡𝑖,𝑗 

of speaker 𝑠𝑖 . The expectation is estimated over text-audio 

pairs of all training speakers.  
Estimates of  𝜋  , and  e,   �̂�  , and  �̂�  denote the trained 

parameters and embeddings. Arık et al [15] proposed two 
approaches: 

1) Speaker adaptation which is based on fine-tuning a 

multi-speaker generative model. Fine-tuning can be applied 

to either the speaker embedding or the whole model. 

2) Speaker encoding which directly estimate the speaker 

embedding from audio samples of an unseen speaker. Such a 

model does not require any fine-tuning during voice cloning. 

More details on details of these systems can found in [15] and 

references therein. 

III. ATTACK MODEL 

Cloned voice can be used to attack both ASR-systems and 

voice-driven interfaces. Shown in Fig. 1 are two possible 

attack models on both systems.  

1) A1: Impersonation attack where attacker plays 

cloned speech in using either a smart-speaker or a humanoid 

robot in front of an ASR system or a voice-driven device.  

2) A2: Injection attack where attacker directly injects 

cloned audio into to the target systems an ASR system or a 

voice-driven device.  

It is important to highlight that injection attack lacks 
speaker-microphone processing block, therefore, both attacks 



are expected to introduce two different types of distortions. 
For example, injection attack is expected to more linear than 
impersonation attack. Moreover, it is also expected to exhibit 
more linearity when compared with the bona-fide speech. This 
is mainly because cloned voice generation process is relatively 
linear than the bona-fide speech generation process which 
consists of four nonlinear sub-processes: (1) respiration, (2) 
phonation, (3) resonance, and (4) articulation. Next section 
outlines a framework for clone voice detection. 

IV. CLONED-VOICE DETECTION USING HIGHER-ORDER 

SPECTRAL ANALYSIS (HOSA) 

We claim that generative models leave characteristic 

artifacts in resulting cloned speech which can be used for 

identification. To verify this claim, spectrograms are 

generated for a ground-truth (bona-fide) speech and 

corresponding cloned speech generated using speaker 

adaptation with whole model presented in [15]. Shown in Fig. 

2 are the spectrogram plots computed with same set of 

parameters from bona-fide speech (top) and cloned speech 

generated using speaker adaptation with whole model 

approach (bottom). It can be observed from Fig. 2 that cloned 

speech exhibit vertical lines across time axis artifacts 

(highlighted using yellow ellipses). Whereas, the 

spectrogram for bona-fide speech, on the other hand, is 

smooth across time axis and lacks vertical-line like artifacts. 

We have observed through extensive experimentation that 

these artifact are consistent for all cloned speech signals, and 

these artifacts are consistent irrespective of speech synthesis 

method. Various approaches can be developed to capture 

such artifacts. In this paper, we proposed to use higher order 

spectral analysis (HOSA) based framework to capture these 

artifacts and used them for cloned speech detection. 

Motivation behind this choice is two-fold:  

(1) Lack of microphone processing block in cloned speech 

is expected to results in lack of higher order nonlinearity 

(resp. lack of quadratic phase-coupling (QPC)) in the 

cloned speech [20]. 

(2) Cloned speech generation using trained generative 

model based framework rely on linear operations for 

speech synthesis. The cloned speech therefore is 

expected to exhibit higher level of linearity score than a 

bona-fide speech. 

The HOSA-based framework is be used to validate both 

hypothesis.  

 

 
Figure 2: Shown is the spectrogram for bona-fide speech (top) and corresponding cloned speech generated using speaker adaptation 

with whole model (bottom).

A. HOSA-based cloned speech detection 

Cloned speech lacks microphone processing stage, it is 

therefore expected to lack microphone/specific distortions 

such as harmonic–, intermodulation (IM)–, and difference-

frequency (DF)–distortions [18,19]. The presence of 

harmonic components at the output of a nonlinear system 

with pure tone input is called as harmonic distortion. System 

nonlinearity can cause IM distortion in the output when a 

complex signal (e.g., speech) is applied at the input of a 



nonlinear system. It causes the output signal to be sums and 

differences of the input signals fundamental frequencies and 

their harmonics, that is, 𝑓1 ±  𝑓2 ,  𝑓2 ±  2𝑓1 ,  𝑓2 ±  3𝑓1 , etc. 

Given a nonlinear system is excited with sum of sinusoids 

with same magnitudes then system nonlinearity can cause 

difference-frequency distortion at the output, e.g., 2𝑓2 − 𝑓1 

, 2𝑓1 −  𝑓2, 3𝑓1 −  2𝑓2, etc. 

It has been shown in [18] that microphone is a nonlinear 

device with a response that can be approximated using 

following discrete time-invariant Hammerstein series model, 

𝑦[𝑛] = ∑ 𝑔1[𝑘]𝑥[𝑛 − 𝑘]
𝑘

+ ∑ 𝑔2[𝜏]𝑥[𝑛 − 𝜏]
𝜏

 

The microphone nonlinearity introduces higher-order 

correlations at its output. The microphone processing block, 

therefore, can be modeled using a higher-order nonlinear 

system. To capture it, HOSA is used. Specifically, higher-

order cumulants (resp. bicoherence) [20] is used to capture 

higher-order correlations. The bicoherence, (𝑓1, 𝑓1) , of a 

signal y[n] is a normalized version of 2-dimensional Fourier 

transform of the third-order cumulants, that is, 

𝐵(𝑓1, 𝑓2) = ∑ 𝜅𝑦
3(𝑘1, 𝑘1)𝑒−𝑗2𝜋(𝑓1𝑘1+𝑓2𝑘2)

∞

𝑘1,𝑘2=−∞
 

          = 𝑌(2𝜋𝑓1)𝑌(2𝜋𝑓2)𝑌∗(2𝜋𝑓1 + 2𝜋𝑓1) 

Here, 𝜅𝑦
3(𝑘1, 𝑘1) denotes third-order cumulant of y[n], and is 

defined as, 

𝜅𝑦
3(𝑘1, 𝑘1) = 𝐸{𝑦∗[𝑛]𝑦[𝑛 + 𝑘1]𝑦[𝑛 + 𝑘2]} 

Here, E{.} denotes expectation. Sometimes, it is more 

convenient to use the normalized value of the bispectrum 

which is also known as bicoherence. This bicoherence is 

given by the following equation [20], 

𝐵(𝑓1, 𝑓2) =
𝑌(2𝜋𝑓1)𝑌(2𝜋𝑓2)𝑌∗(2𝜋𝑓1 + 2𝜋𝑓1)

|𝑌(2𝜋𝑓1)𝑌(2𝜋𝑓2)𝑌∗(2𝜋𝑓1 + 2𝜋𝑓1)|
 

It is important to highlight impact of nonlinearity on 

bicoherence spectrum. Consider a pair of sinusoids with 

frequencies 𝑓1 and 𝑓2; the IM distortion will result in a new 

signal at  𝑓1 ±  𝑓2 whose magnitude is correlated to 𝑓1 and 𝑓2, 

which will result in a high magnitude value in the 

bicoherence magnitude. Moreover, if the input sinusoids 

have phases, 𝜃1  and  𝜃2 , then the phase of the nonlinearity 

induced intermodulation components 𝑓1 ±  𝑓2 are 𝜃1 ± 𝜃2. It 

is easy to see that the bicoherence has a zero phase and a bias 

towards /2 may also occur due to harmonic auto-

correlations. In general, the average bicoherence magnitude 

would increase as the amount of QPC grows. It is therefore 

reasonable to assume that cloned speech injection attack is 

expected to: (i) exhibit relatively smooth magnitude of 

bicoherence when compared with bona-fide speech, and 2) 

the phase of bicoherence of cloned speech is expected to be 

flat and monotonic when compared with bona-fide speech. 

To capture traces of a cloned voice injection attack, 

intermodulation distortion, QPC, Gaussianity test statistics, 

and linearity statistics can be used. For this paper, QPC, 

Gaussianity test statistics, and linearity statistics are used. 

The motivation behind focusing on intermodulation 

distortion is that it is more dominant in the cloned signal. To 

verify this claim, we estimated the bicoherence from both the 

speech and the corresponding cloned recordings. Shown in 

the top panel of Fig. 3 are the bicoherence phase and 

magnitude spectra of cloned speech generated using speaker 

adaptation with whole model and bicoherence phase and 

magnitude spectra estimated from corresponding ground 

truth (bona-fide speech). 

 

 
Figure 3a: Shown in the top-panel is the phase spectrum of 

bicoherence estimated from cloned voice using speaker adaptation 

with whole model and in the bottom-panel is the phase spectrum of 

bicoherence estimated from corresponding ground truth recoding. 

 
Figure 3b: Shown in the left-panel is the magnitude spectrum of 

bicoherence estimated from cloned voice using speaker adaptation 

with whole model and in the right-panel is the magnitude spectrum 

of bicoherence estimated from corresponding ground truth (bond-

fide) recoding. 



It can be observed from Fig. 3a that there is significant 

intermodulation distortion spread in the bona-fide speech 

recording which can be observed from phase spectrum and a 

non-informative or monotonic bicoherence phase spectrum 

for cloned speech. It can also be observed from Fig. 3b that 

there is significant intermodulation distortion spread in the 

bona-fide speech recording magnitude spectrum which is 

lacking is the magnitude spectrum of the cloned recording. 

B. Gaussianity test statistics- and linearity test statistics- 

based detection 

Gaussianity and linearity statistics tests can also be used 

to confirm non-Gaussianity and nonlinearity in a given 

stationary time series. It is reasonable to assume that bona-

fide and cloned speech signals are stationarity sequences. 

Moreover, bone-fide speech signal is also modeled as a non-

Gaussian random sequence. The microphone processing 

block present in the bona-fide speech is expected to introduce 

nonlinearity in the resulting sequence.  

Let x(n) is non-Gaussian speech sequence and y(n) is 

linear non-Gaussian sequence of cloned speech. How do we 

know that x[n] is non-Gaussian and y[n] is non-Gaussina and 

linear? To achieve this goal, Hinich’s non-skewness (also 

known as Gaussianity) and linearity tests [21] is used.  

These tests rely on the fact that if the 3rd-order cumulants 

of a stationary process are zero, then its bicoherence is zero, 

and non-zero bicoherence implies that process is non-

Gaussian. Moreover, if that the process is linear and non-

Gaussian, then the bicoherence is a nonzero constant. 

Following binary hypothesis testing can be used for non- 

Gaussianity and nonlinearity detection:  

H1: the bispectrum of y[n] is nonzero and not constant; 

H0: the bispectrum of y[n] is nonzero and constant. 

V. EXPERIMENTAL RESULTS 

A. Dataset 

Baidu Silicon Valley AI Lab cloned audio dataset is used 
for performance evaluation. It was downloaded from 
https://audiodemos.github.io. This dataset consists of 10 
ground truth audio samples, 120 cloned recordings, and four 
morphed recordings. Summary of the dataset used is provided 
in Table I. More details about the dataset can be found in [15]. 

TABLE I.  SUMMARY OF DATASET USED 

# OF 

SAMPLES 

VCTKt  VCTKg  LibriSpeechtVCTKg  

SEA WMA SEA WMA 

1 4 4 4 4 

5 4 4 4 4 

10 4 4 4 4 

20 4 4 4 4 

50 4 4 4 4 

100 4 4 4 4 

 Speaker encoder (LibriSpeechtVCTKg) 

Without fine tuning With fine tuning 

1 4 4 

5 4 4 

10 4 4 

SEA – Speaker Embedding Adaption 

WMA – Whole Model Adaption  

LibriSpeecht – training on Libri speakers 

VCTKt – training on VCTK speakers 

VCTKg – using VCTK speakers for cloned speech generation 

For this dataset generation, the multi-speaker model and 

speaker encoder model were trained on 84 VCTK speakers 

(48 KHz sampling rate), other VCTK speakers (48 KHz 

sampling rate) were used for voice cloning. The multi-

speaker model and speaker encoder model were trained on 

LibriSpeech speakers (16 KHz sampling rate), VCTK 

speakers (down-sampled to 16 KHz samples/sec.) were used 

for voice cloning. The average duration of a cloning sample 

is 3.7 seconds. 

B. Results 

Performance of the proposed fake audio detection method 

is evaluated using following set of experiments.  

1) Experiment 1: The goal of this experiment is to 

evaluate performance of the proposed QPC-based detection 

on cloned audios generated through speaker embedding 

adaptation-based cloned audio generation discussed in [15]. 

The performance of Gaussianity and linearity test statistics 

based methods is also evaluated. To this end, 24x2 = 48 

cloned recordings with whole model adaption along with 6 

ground truth recordings downloaded from [15] are analyzed 

using HOSA. Both QPC and Gaussianity and linearity test 

statistics are estimated from cloned and ground truth 

recordings. Detection performance for both schemes is 

provided in the Table II. It can be observed from Table II that 

the poposed method successfully detected cloned audios. 

2) Experiment 2: The goal of this experiment is to 

evaluate performance of the proposed QPC-based detection 

on cloned audios generated through whole model adaptation-

based cloned audio generation discussed in [15]. In addition, 

performance of Gaussianity and linearity test statistics based 

methods is also evaluated for whole model adaptation-based 

cloned audio generation. To this end, 24x2 = 48 cloned 

recordings with whole model adaption along with 6 ground 

truth recordings downloaded from [15] are analyzed using 

HOSA. Both QPC and Gaussianity and linearity test statistics 

are estimated from cloned and ground truth recordings. 

Detection performance for both schemes is provided in the 

Table II. It can be observed from Table II that the poposed 

method successfully detected cloned recordings. 

TABLE II.  DETECTION PERFORMANCE 

 Detection Rate (%) 

VCTKt  VCTKg  LibriSpeechtVCTKg 

https://audiodemos.github.io/


# of 

samples 

SEA WMA SEA WMA 

1 100 100 100 100 

5 100 100 100 100 

10 100 100 100 100 

20 100 100 100 100 

50 100 100 100 100 

100 100 75 100 75 

 
3) Experiment 3: The goal of this experiment is to 

evaluate performance of the proposed method on cloned 
audios generated speaker encoding – based cloned speech 
synthesis as discussed in [15]. To this end, 12x2 = 24 cloned 
recordings along with three ground truth recordings. To this 
end, cloned speech recordings and three ground truth 
recordings download loaded are analyzed for QPC and 
Gaussianity and linearity test statistic estimation. The 
proposed methods successfully detected all 24 cloned 
recording and all three ground truth recordings. 

4) Experiment 4: The goal of this experiment is to 

evaluate performance of the proposed method on morphed 

audios. The morphed audios are generated by manipulating 

estimated speaker embedding parameter by the speaker 

encoder as discussed in [15]. To this end, four morphed 

speech recordings along with two ground truth recordings 

download loaded are analyzed for QPC and Gaussianity and 

linearity test statistic estimation. The proposed methods 

successfully detected all four morphed recordings. 

VI. CONCLUSIONS  

This paper presents a framework for cloned speech 

detection. We have demonstrated that cloned speech exhibit 

characteristic artifacts which are used for cloned audio 

detection. We have also demonstrated that cloned audios 

lacks higher order correlations. Higher-order spectral 

analysis is used for cloned audio detection. Specifically, QPC 

and Gaussianity and linearity test statistics are used for higher 

order correlation detection.   Effectiveness of the proposed 

method is evaluated on cloned audios generated using 

speaker adaptation- and speaker encoding-based approaches 

proposed in [15]. Performance of the proposed for a dataset 

of 134 speech samples indicate that the proposed method is 

capable of detecting bona-fide and cloned audios with a 

perfect detection rate. 

Our future work aims to rely on and traditional spectral 

features (spectrogram and MFCC) along with the higher 

order spectral features analysis to learn the underlying model 

for cloned audio and used it for cloned audio detection. 
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